Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Parasite ; 31: 11, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450717

RESUMO

African animal trypanosomosis (AAT) was one of the main disease-related constraints to the development of intensive livestock production systems in the Niayes region of Senegal, a 30 km wide strip of land along the coast between Dakar and Saint-Louis. To overcome this constraint, the Government of Senegal initiated an area-wide integrated pest management programme combining chemical control tactics with the sterile insect technique to eradicate a population of the tsetse fly Glossina palpalis gambiensis Vanderplank, 1949 (Diptera, Glossinidae) in this area. The project was implemented following a phased conditional approach, and the target area was divided into three blocks treated sequentially. This study aims to assess the temporal dynamics of the prevalence of Trypanosoma spp. during the implementation of this programme. Between 2009 and 2022, 4,359 blood samples were collected from cattle and screened for trypanosomes using both the buffy coat and ELISA techniques, and PCR tests since 2020. The seroprevalence decreased from 18.9% (95%CI: 11.2-26.5) in 2009 to 0% in 2017-2022 in block 1, and from 92.9% (95%CI: 88.2-97) in 2010 to 0% in 2021 in block 2. The parasitological and serological data confirm the entomological monitoring results, i.e., that there is a high probability that the population of G. p. gambiensis has been eradicated from the Niayes and that the transmission of AAT has been interrupted in the treated area. These results indicate the effectiveness of the adopted approach and show that AAT can be sustainably removed through the creation of a zone free of G. p. gambiensis.


Title: Trypanosomose animale éliminée dans une importante région de production d'élevage au Sénégal suite à l'éradication d'une population de glossines. Abstract: La trypanosomose animale africaine (TAA) était l'une des principales contraintes pathologiques au développement de systèmes de production animale intensifs dans les Niayes du Sénégal, une bande de terre large de 30 km longeant la côte entre Dakar et Saint-Louis. Pour surmonter cette contrainte, le Gouvernement du Sénégal a lancé un programme de lutte intégrée à l'échelle de la zone combinant lutte chimique et technique de l'insecte stérile pour éradiquer une population de Glossina palpalis gambiensis Vanderplank, 1949 (Diptera, Glossinidae). Le projet a été mis en œuvre selon une approche conditionnelle progressive, et la zone cible a été divisée en trois blocs, traités de manière séquentielle. L'objectif de cette étude était d'évaluer la dynamique temporelle de la prévalence de Trypanosoma spp. au cours de la mise en œuvre du programme. Entre 2009 et 2022, 4 359 échantillons de sang ont été prélevés sur des bovins et ont fait l'objet d'un dépistage des trypanosomes à l'aide des techniques du buffy-coat et ELISA, ainsi que de test PCR depuis 2020. Dans le bloc 1, la séroprévalence est passée de 18,9 % (IC 95 % : 11,2­26,5) en 2009 à 0 % entre 2017­2022 et de 92,9 % (IC 95 % : 88,2-97) en 2010 à 0 % en 2021 pour le block 2. Les données parasitologiques et sérologiques confirment les résultats du suivi entomologique selon lesquels il est très probable que la population de Glossina palpalis gambiensis soit éradiquée des Niayes, et que la transmission de la TAA a été interrompue dans la zone traitée. Elles indiquent l'efficacité de l'approche adoptée, et montrent que la TAA peut être durablement éliminée grâce à la création d'une zone exempte de G. p. gambiensis.


Assuntos
Doenças dos Bovinos , Tripanossomíase Africana , Tripanossomíase , Animais , Bovinos , Gado , Senegal/epidemiologia , Estudos Soroepidemiológicos , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/prevenção & controle , Tripanossomíase Africana/veterinária
2.
Insects ; 14(2)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36835776

RESUMO

Pilot programs of the sterile insect technique (SIT) against Aedes aegypti may rely on importing significant and consistent numbers of high-quality sterile males from a distant mass rearing factory. As such, long-distance mass transport of sterile males may contribute to meet this requirement if their survival and quality are not compromised. This study therefore aimed to develop and assess a novel method for long-distance shipments of sterile male mosquitoes from the laboratory to the field. Different types of mosquito compaction boxes in addition to a simulation of the transport of marked and unmarked sterile males were assessed in terms of survival rates/recovery rates, flight ability and morphological damage to the mosquitoes. The novel mass transport protocol allowed long-distance shipments of sterile male mosquitoes for up to four days with a nonsignificant impact on survival (>90% for 48 h of transport and between 50 and 70% for 96 h depending on the type of mosquito compaction box), flight ability, and damage. In addition, a one-day recovery period for transported mosquitoes post-transport increased the escaping ability of sterile males by more than 20%. This novel system for the long-distance mass transport of mosquitoes may therefore be used to ship sterile males worldwide for journeys of two to four days. This study demonstrated that the protocol can be used for the standard mass transport of marked or unmarked chilled Aedes mosquitoes required for the SIT or other related genetic control programs.

3.
Acta Trop ; 232: 106487, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35487295

RESUMO

Bluetongue (BT) is an infectious, arthropod-borne viral disease of domestic and wild ruminants. The disease causes animal mortality, production decrease and commercial limits for herds. Despite the active circulation of the disease in the world, few studies have been carried out in Senegal. The objective of this study was to assess the current prevalence of BT in small ruminants and the serotypes circulating in Senegal. A cross-sectional study was conducted in the fourteen regions of Senegal. After the sampling campaign, sera collected in sheep and goats herds were screened for the presence of Bluetongue virus (BTV) specific antibodies using c-Elisa. The whole blood of seropositive animals was further analyzed by RT-qPCR and positive samples were typed to identify BTV serotypes. Analysis of several risk factors such as age, sex and species of animals was performed using logistic regression. The overall seroprevalence of BTV in Senegal was 72.6% (95% CI: 70.3-74.9%) with 75.9% (95% CI: 72.2-79.5%) in goat and 70.6% (95% CI: 67.5-73.6%) in sheep. Female (prevalence=77.1%) and adult (prevalence=80%) animals showed the highest seropositivity to BTV compared respectively to male (55.7%, p=6.133e-09) and young (49.4%, p < 2.2e-16). The RT-qPCR results showed the presence of BT viral genome in 359 small ruminants. The results obtained from serological and genotyping studies showed an active spread of the Bluetongue virus in domestic ruminants and phylogenetic analysis showed that the BTV-2 is one of the circulating serotypes in Senegal. This study allows having baseline information for controlling Bluetongue in Senegal.


Assuntos
Vírus Bluetongue , Bluetongue , Doenças das Cabras , Animais , Anticorpos Antivirais , Bluetongue/epidemiologia , Estudos Transversais , Feminino , Doenças das Cabras/epidemiologia , Cabras , Masculino , Filogenia , Ruminantes , Senegal/epidemiologia , Estudos Soroepidemiológicos , Ovinos
4.
Insects ; 13(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35447821

RESUMO

In the implementation of mosquito control strategy programs using Sterile Insect Technique and other rear and release strategies, knowledge on the dispersion, competitiveness and survival of mosquitos is considered essential. To assess these parameters, marking techniques are generally used to differentiate colony mosquitoes from wild ones. Most of the existing mosquito marking methods require numerous manipulations that can impact their quality. In this study, we have developed a self-marking technique that can reduce the damage associated with mosquito handling. The marking technique consisted of adding fluorescent powder (DayGlo: A-17-N Saturn yellow) directly to the surface water of the receptacle containing Aedes aegypti male pupae. Different quantities of powder were used, and marking efficacy, powder persistence and mosquito survival were assessed. The results show a mean marking rate of 98 ± 1.61%, and the probability of marking increased significantly (p < 0.001) with increasing concentrations of fluorescent powder. Fluorescent powder persisted up to 20 days and did not induce a negative effect on mosquito survival (χ2 = 5.3, df = 7, p = 0.63). In addition, powder transfer did not occur between marked and unmarked populations. This marking method significantly reduces human intervention and mosquito handling during the marking process, improving the quality of marked mosquitoes used to assess SIT programs.

5.
PLoS Negl Trop Dis ; 16(2): e0010024, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35108284

RESUMO

Rift Valley fever (RVF) is a mosquito-borne disease mostly affecting wild and domestic ruminants. It is widespread in Africa, with spillovers in the Arab Peninsula and the southwestern Indian Ocean. Although RVF has been circulating in West Africa for more than 30 years, its epidemiology is still not clearly understood. In 2013, an RVF outbreak hit Senegal in new areas that weren't ever affected before. To assess the extent of the spread of RVF virus, a national serological survey was implemented in young small ruminants (6-18 months old), between November 2014 and January 2015 (after the rainy season) in 139 villages. Additionally, the drivers of this spread were identified. For this purpose, we used a beta-binomial ([Formula: see text]) logistic regression model. An Integrated Nested Laplace Approximation (INLA) approach was used to fit the spatial model. Lower cumulative rainfall, and higher accessibility were both associated with a higher RVFV seroprevalence. The spatial patterns of fitted RVFV seroprevalence pointed densely populated areas of western Senegal as being at higher risk of RVFV infection in small ruminants than rural or southeastern areas. Thus, because slaughtering infected animals and processing their fresh meat is an important RVFV transmission route for humans, more human populations might have been exposed to RVFV during the 2013-2014 outbreak than in previous outbreaks in Senegal.


Assuntos
Doenças dos Animais/epidemiologia , Surtos de Doenças/veterinária , Febre do Vale de Rift/epidemiologia , Doenças dos Animais/virologia , Criação de Animais Domésticos , Animais , Humanos , Modelos Logísticos , Chuva , Febre do Vale de Rift/transmissão , Vírus da Febre do Vale do Rift/imunologia , Vírus da Febre do Vale do Rift/isolamento & purificação , Ruminantes/virologia , Senegal/epidemiologia , Estudos Soroepidemiológicos , Zoonoses Virais/epidemiologia
6.
Open Res Eur ; 2: 67, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37645305

RESUMO

Vector-borne diseases affecting livestock have serious impacts in Africa. Trypanosomosis is caused by parasites transmitted by tsetse flies and other blood-sucking Diptera. The animal form of the disease is a scourge for African livestock keepers, is already present in Latin America and Asia, and has the potential to spread further. A human form of the disease also exists, known as human African trypanosomosis or sleeping sickness. Controlling and progressively minimizing the burden of animal trypanosomosis (COMBAT) is a four-year research and innovation project funded by the European Commission, whose ultimate goal is to reduce the burden of animal trypanosomosis (AT) in Africa. The project builds on the progressive control pathway (PCP), a risk-based, step-wise approach to disease reduction or elimination. COMBAT will strengthen AT control and prevention by improving basic knowledge of AT, developing innovative control tools, reinforcing surveillance, rationalizing control strategies, building capacity, and raising awareness. Knowledge gaps on disease epidemiology, vector ecology and competence, and biological aspects of trypanotolerant livestock will be addressed. Environmentally friendly vector control technologies and more effective and adapted diagnostic tools will be developed. Surveillance will be enhanced by developing information systems, strengthening reporting, and mapping and modelling disease risk in Africa and beyond. The socio-economic burden of AT will be assessed at a range of geographical scales. Guidelines for the PCP and harmonized national control strategies and roadmaps will be developed. Gender equality and ethics will be pivotal in all project activities. The COMBAT project benefits from the expertise of African and European research institutions, national veterinary authorities, and international organizations. The project consortium comprises 21 participants, including a geographically balanced representation from 13 African countries, and it will engage a larger number of AT-affected countries through regional initiatives.

7.
Acta Trop ; 222: 106065, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34303690

RESUMO

The use of efficient mosquito sampling methods in vector surveillance programs is crucial to inform control actions and prevent outbreaks. amongst existing trapping methods, the BG sentinel trap is widely used for collecting mosquitoes from the subgenus Stegomyia. However, studies state that the BG-sentinel trap underestimates the relative abundance of mosquito vectors. In this study, we used mice to enhance the effectiveness of the BG-sentinel trap to collect Aedes aegypti (Linnaeus) and follow the species' daily abundance under local conditions. The Latin square method was used to compare different combinations in three different seasons. Of the 35,107 mosquitoes collected, Ae. aegypti (53.82%) and Culex quinquefasciatus (46.07%) were dominant. The combination of BG-Lure + 3 mice captured more Ae. aegypti individuals (apparent density per trap/day (ADT = 187.65 ± 133.53; p < 0.001) followed by the 3 mice-baited BG-sentinel trap (ADT = 163.47 ± 117.32), the BG-sentinel trap without attractant (ADT = 74.15 ± 117.07) and the BG-sentinel trap + BG-Lure (ADT = 47.1 ± 115.91). Aedes aegypti showed two peaks of activity in the day, one following the sunrise and one before the sunset, influenced by temperature and relative humidity. Our study suggests the use of mice to enhance the efficiency of the BG-Sentinel trap to catch Ae. aegypti. However, its application in large scale entomological monitoring programs should be difficult because of ethical and operational constraints.


Assuntos
Aedes , Controle de Mosquitos , Animais , Culex , Camundongos , Mosquitos Vetores , Senegal
8.
Epidemics ; 33: 100409, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33137548

RESUMO

Estimating the epidemic potential of vector-borne diseases, along with the relative contribution of underlying mechanisms, is crucial for animal and human health worldwide. In West African Sahel, several outbreaks of Rift Valley fever (RVF) have occurred over the last decades, but uncertainty remains about the conditions necessary to trigger these outbreaks. We use the basic reproduction number (R0) as a measure of RVF epidemic potential in northern Senegal, and map its value in two distinct ecosystems, namely the Ferlo and the Senegal River delta and valley. We consider three consecutive rainy seasons (July-November 2014, 2015 and 2016) and account for several vector and animal species. We parametrize our model with estimates of Aedes vexans arabiensis, Culex poicilipes, Culex tritaeniorhynchus, cattle, sheep and goat abundances. The impact of RVF virus introduction is assessed every week over northern Senegal. We highlight September as the period of highest epidemic potential in northern Senegal, resulting from distinct dynamics in the two study areas. Spatially, in the seasonal environment of the Ferlo, we observe that high-risk locations vary between years. We show that decreased vector densities do not greatly reduce R0 and that cattle immunity has a greater impact on reducing transmission than small ruminant immunity. The host preferences of vectors and the temperature-dependent time interval between their blood meals are crucial parameters needing further biological investigations.


Assuntos
Febre do Vale de Rift/epidemiologia , Aedes/virologia , Animais , Bovinos , Culex/virologia , Surtos de Doenças , Vetores de Doenças , Ecossistema , Epidemias , Humanos , Mosquitos Vetores , Febre do Vale de Rift/transmissão , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift , Estações do Ano , Senegal/epidemiologia , Ovinos , Temperatura
9.
Microorganisms ; 8(11)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187059

RESUMO

Bluetongue is a non-contagious viral disease affecting small ruminants and cattle that can cause severe economic losses in the livestock sector. The virus is transmitted by certain species of the genus Culicoides and consequently, understanding their distribution is essential to enable the identification of high-risk transmission areas. In this work we use bioclimatic and environmental variables to predict vector abundance, and estimate spatial variations in the basic reproductive ratio  R0. The resulting estimates were combined with livestock mobility and serological data to assess the risk of Bluetongue outbreaks in Senegal. The results show an increasing abundance of C. imicola, C. oxystoma, C. enderleini, and C. miombo from north to south. R0 < 1 for most areas of Senegal, whilst southern (Casamance) and southeastern (Kedougou and part of Tambacounda) agro-pastoral areas have the highest risk of outbreak (R0 = 2.7 and 2.9, respectively). The next higher risk areas are in the Senegal River Valley (R0 = 1.07), and the Atlantic coast zones. Seroprevalence rates, shown by cELISA, weren't positively correlated with outbreak probability. Future works should include follow-up studies of competent vector abundancies and serological surveys based on the results of the risk analysis conducted here to optimize the national epidemiological surveillance system.

10.
PLoS Negl Trop Dis ; 14(6): e0008009, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32479505

RESUMO

Rift Valley fever (RVF) is endemic in northern Senegal, a Sahelian area characterized by a temporary pond network that drive both RVF mosquito population dynamics and nomadic herd movements. To investigate the mechanisms that explain RVF recurrent circulation, we modelled a realistic epidemiological system at the pond level integrating vector population dynamics, resident and nomadic ruminant herd population dynamics, and nomadic herd movements recorded in Younoufere area. To calibrate the model, serological surveys were performed in 2015-2016 on both resident and nomadic domestic herds in the same area. Mosquito population dynamics were obtained from a published model trained in the same region. Model comparison techniques were used to compare five different scenarios of virus introduction by nomadic herds associated or not with vertical transmission in Aedes vexans. Our serological results confirmed a long lasting RVF endemicity in resident herds (IgG seroprevalence rate of 15.3%, n = 222), and provided the first estimation of RVF IgG seroprevalence in nomadic herds in West Africa (12.4%, n = 660). Multivariate analysis of serological data suggested an amplification of the transmission cycle during the rainy season with a peak of circulation at the end of that season. The best scenario of virus introduction combined yearly introductions of RVFV from 2008 to 2015 (the study period) by nomadic herds, with a proportion of viraemic individuals predicted to be larger in animals arriving during the 2nd half of the rainy season (3.4%). This result is coherent with the IgM prevalence rate (4%) found in nomadic herds sampled during the 2nd half of the rainy season. Although the existence of a vertical transmission mechanism in Aedes cannot be ruled out, our model demonstrates that nomadic movements are sufficient to account for this endemic circulation in northern Senegal.


Assuntos
Aedes/crescimento & desenvolvimento , Surtos de Doenças , Modelos Estatísticos , Febre do Vale de Rift/epidemiologia , Doenças Transmitidas por Vetores/epidemiologia , Doenças Transmitidas por Vetores/veterinária , Animais , Transmissão de Doença Infecciosa , Feminino , Humanos , Masculino , Recidiva , Febre do Vale de Rift/transmissão , Senegal/epidemiologia , Estudos Soroepidemiológicos , Doenças Transmitidas por Vetores/transmissão
11.
BMC Ecol ; 19(1): 45, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676006

RESUMO

BACKGROUND: Vector-borne diseases are among the leading causes of morbidity and mortality in humans and animals. In the Afrotropical region, some are transmitted by Culicoides, such as Akabane, bluetongue, epizootic haemorrhagic fever and African horse sickness viruses. Bluetongue virus infection has an enormous impact on ruminant production, due to its high morbidity and mortality rates. METHODS: A nationwide Culicoides trapping campaign was organized at the end of the 2012 rainy season in Senegal. A Maximum Entropy approach (MaxEnt), Boosted Regression Tree (BRT) method and Ecological Niche Factor Analysis (ENFA) were used to develop a predictive spatial model for the distribution of Culicoides, using bio-climatic variables, livestock densities and altitude. RESULTS: The altitude, maximum temperature of the warmest month, precipitation of the warmest quarter, mean temperature of the wettest quarter, temperature seasonality, precipitation of the wettest quarter and livestock density were among the most important factors to predict suitable habitats of Culicoides. Culicoides occurrences were, in most of the cases, positively correlated to precipitation variables and livestock densities; and negatively correlated to the altitude and temperature indices. The Niayes area and the Groundnut basin were the most suitable habitats predicted. CONCLUSION: We present ecological niche models for different Culicoides species, namely C. imicola, C. oxystoma, C. enderleini and C. miombo, potential vectors of bluetongue virus, on a nationwide scale in Senegal. Through our modelling approach, we were able to determine the effect of bioclimatic variables on Culicoides habitats and were able to generate maps for the occurrence of Culicoides species. This information will be helpful in developing risk maps for disease outbreaks.


Assuntos
Vírus Bluetongue , Ceratopogonidae , Animais , Ecossistema , Insetos Vetores , Senegal
12.
PLoS One ; 14(10): e0215194, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31584948

RESUMO

BACKGROUND: Host-vector contact is a key factor in vectorial capacity assessment and thus the transmission of mosquito-borne viruses such as Rift Valley Fever (RVF), an emerging zoonotic disease of interest in West Africa. The knowledge of the host-feeding patterns of vector species constitutes a key element in the assessment of their epidemiological importance in a given environment. The aim of this work was to identify the blood meal origins of the mosquito Aedes vexans arabiensis, the main vector of RVF virus in the Ferlo pastoral ecosystem of Senegal. METHODOLOGY/PRINCIPAL FINDINGS: Engorged female mosquitoes were collected in Younouféré in the pastoral ecosystem in the Ferlo region during the 2014 rainy season. CO2-baited CDC light traps were set at six points for two consecutive nights every month from July to November. Domestic animals present around traps were identified and counted for each trapping session. Blood meal sources of engorged mosquitoes were identified using a vertebrate-specific multiplexed primer set based on cytochrome b. Blood meal sources were successfully identified for 319 out of 416 blood-fed females (76.68%), of which 163 (51.1%) were single meals, 146 (45.77%) mixed meals from two different hosts and 10 (3.13%) mixed meals from three different hosts. Aedes vexans arabiensis fed preferentially on mammals especially on horse compared to other hosts (FR = 46.83). Proportions of single and mixed meals showed significant temporal and spatial variations according to the availability of the hosts. CONCLUSION: Aedes vexans arabiensis shows an opportunistic feeding behavior depending on the host availability. This species fed preferentially on mammals especially on horses (primary hosts) and ruminants (secondary hosts).


Assuntos
Aedes/fisiologia , Ecossistema , Comportamento Alimentar/fisiologia , Mosquitos Vetores/fisiologia , Febre do Vale de Rift/transmissão , Zoonoses/transmissão , Animais , Feminino , Humanos , Febre do Vale de Rift/epidemiologia , Senegal , Zoonoses/epidemiologia
13.
PLoS One ; 14(5): e0216802, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31086401

RESUMO

BACKGROUND: The sterile insect technique (SIT) requires mass-rearing of the target species, irradiation to induce sexual sterility and transportation from the mass-rearing facility to the target site. Those treatments require several steps that may affect the biological quality of sterile males. This study has been carried out to evaluate the relative impact of chilling, irradiation and transport on emergence rate, flight ability and survival of sterile male Glossina palpalis gambiensis. RESULTS: Chilling, irradiation and transport all affected the quality control parameters studied. The emergence rate was significantly reduced by long chilling periods and transport, i.e. from 92% at the source insectary in Burkina Faso to 78% upon arrival in Senegal. Flight ability was affected by all three parameters with 31% operational flies lost between the production facility and the destination site. Only survival under stress was not affected by any of the treatments. CONCLUSION: The chilling period and transport were the main factors that impacted significantly the quality of sterile male pupae. Therefore, in the operational programme, the delivery of sterile male pupae was divided over two shipments per week to reduce the chilling time and improve the quality of the sterile males. Quality of the male pupae may further be improved by reducing the transport time and vibrations during transport.


Assuntos
Controle Biológico de Vetores/métodos , Moscas Tsé-Tsé/fisiologia , Animais , Burkina Faso , Temperatura Baixa , Infertilidade Masculina/etiologia , Infertilidade Masculina/veterinária , Masculino , Pupa/fisiologia , Pupa/efeitos da radiação , Reprodução , Senegal , Meios de Transporte , Moscas Tsé-Tsé/efeitos da radiação
14.
Parasit Vectors ; 11(1): 615, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30509304

RESUMO

BACKGROUND: Biting midge species of the genus Culicoides Latreille (Diptera: Ceratopogonidae) comprise more than 1300 species distributed worldwide. Several species of Culicoides are vectors of various viruses that can affect animals, like the African horse sickness virus (AHSV), known to be endemic in sub-Saharan Africa. The ecological and veterinary interest of Culicoides emphasizes the need for rapid and reliable identification of vector species. However, morphology-based identification has limitations and warrants integration of molecular data. DNA barcoding based on the mitochondrial gene cytochrome c oxidase subunit 1 (cox1) is used as a rapid and authentic tool for species identification in a wide variety of animal taxa across the globe. In this study, our objectives were as follows: (i) establish a reference DNA barcode for Afrotropical Culicoides species; (ii) assess the accuracy of cox1 in identifying Afrotropical Culicoides species; and (iii) test the applicability of DNA barcoding for species identification on a large number of samples of Culicoides larvae from the Niayes area of Senegal, West Africa. RESULTS: A database of 230 cox1 sequences belonging to 42 Afrotropical Culicoides species was found to be reliable for species-level assignments, which enabled us to identify cox1 sequences of Culicoides larvae from the Niayes area of Senegal. Of the 933 cox1 sequences of Culicoides larvae analyzed, 906 were correctly identified by their barcode sequences corresponding to eight species of Culicoides. A total of 1131 cox1 sequences of adult and larval Culicoides were analyzed, and a hierarchical increase in mean divergence was observed according to two taxonomic levels: within species (mean = 1.92%, SE = 0.00), and within genus (mean = 17.82%, SE = 0.00). CONCLUSIONS: Our study proves the efficiency of DNA barcoding for studying Culicoides larval diversity in field samples. Such a diagnostic tool offers great opportunities for investigating Culicoides immature stages ecology and biology, a prerequisite for the implementation of eco-epidemiological studies to better control AHSV in the Niayes region of Senegal, and more generally in sub-Saharan Africa.


Assuntos
Ceratopogonidae/classificação , Código de Barras de DNA Taxonômico , Insetos Vetores/classificação , Larva/classificação , Animais , Biodiversidade , Ceratopogonidae/genética , Ciclo-Oxigenase 1/genética , Proteínas de Insetos/genética , Insetos Vetores/genética , Larva/genética , Senegal
15.
Parasit Vectors ; 11(1): 341, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884209

RESUMO

BACKGROUND: In Senegal, the last epidemic of African horse sickness (AHS) occurred in 2007. The western part of the country (the Niayes area) concentrates modern farms with exotic horses of high value and was highly affected during the 2007 outbreak that has started in the area. Several studies were initiated in the Niayes area in order to better characterize Culicoides diversity, ecology and the impact of environmental and climatic data on dynamics of proven and suspected vectors. The aims of this study are to better understand the spatial distribution and diversity of Culicoides in Senegal and to map their abundance throughout the country. METHODS: Culicoides data were obtained through a nationwide trapping campaign organized in 2012. Two successive collection nights were carried out in 96 sites in 12 (of 14) regions of Senegal at the end of the rainy season (between September and October) using OVI (Onderstepoort Veterinary Institute) light traps. Three different modeling approaches were compared: the first consists in a spatial interpolation by ordinary kriging of Culicoides abundance data. The two others consist in analyzing the relation between Culicoides abundance and environmental and climatic data to model abundance and investigate the environmental suitability; and were carried out by implementing generalized linear models and random forest models. RESULTS: A total of 1,373,929 specimens of the genus Culicoides belonging to at least 32 different species were collected in 96 sites during the survey. According to the RF (random forest) models which provided better estimates of abundances than Generalized Linear Models (GLM) models, environmental and climatic variables that influence species abundance were identified. Culicoides imicola, C. enderleini and C. miombo were mostly driven by average rainfall and minimum and maximum normalized difference vegetation index. Abundance of C. oxystoma was mostly determined by average rainfall and day temperature. Culicoides bolitinos had a particular trend; the environmental and climatic variables above had a lesser impact on its abundance. RF model prediction maps for the first four species showed high abundance in southern Senegal and in the groundnut basin area, whereas C. bolitinos was present in southern Senegal, but in much lower abundance. CONCLUSIONS: Environmental and climatic variables of importance that influence the spatial distribution of species abundance were identified. It is now crucial to evaluate the vector competence of major species and then combine the vector densities with densities of horses to quantify the risk of transmission of AHS virus across the country.


Assuntos
Doença Equina Africana/transmissão , Bluetongue/transmissão , Ceratopogonidae/fisiologia , Doenças dos Cavalos/transmissão , Insetos Vetores/fisiologia , Doença Equina Africana/epidemiologia , Doença Equina Africana/virologia , Vírus da Doença Equina Africana/genética , Vírus da Doença Equina Africana/isolamento & purificação , Vírus da Doença Equina Africana/fisiologia , Distribuição Animal , Animais , Bluetongue/epidemiologia , Bluetongue/virologia , Vírus Bluetongue/genética , Vírus Bluetongue/isolamento & purificação , Vírus Bluetongue/fisiologia , Ceratopogonidae/virologia , Ecossistema , Cavalos , Insetos Vetores/virologia , Modelos Estatísticos , Estações do Ano , Senegal/epidemiologia
16.
PLoS Negl Trop Dis ; 11(12): e0006172, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29281634

RESUMO

BACKGROUND: In the Niayes area, located in the west of Senegal, only one tsetse species, Glossina palpalis gambiensis Vanderplank (Diptera: Glossinidae) was present. The Government of Senegal initiated and implemented an elimination programme in this area that included a sterile insect technique (SIT) component. The G. p. gambiensis strain (BKF) mass-reared at the Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES) in Burkina Faso was used for the SIT component. METHODOLOGY/PRINCIPAL FINDINGS: Studies conducted in 2011 in four localities in the Niayes area (Pout, Sébikotane, Diacksao Peul and the Parc de Hann) showed that the BKF strain demonstrated inferior survival in the ecosystem of the Parc de Hann, a forested area in the city centre of the capital Dakar. Therefore, G. p. gambiensis flies from the Niayes area (SEN strain) were colonized. Here we compared the competitiveness and survival of the two strains (BKF and SEN) in the Parc de Hann. Released sterile males of the SEN colony showed a daily mortality rate of 0.08 (SD 0.08) as compared with 0.14 (SD 0.08) for the BKF flies but the difference was not significant (p-value = 0.14). However, the competitiveness of the SEN males was lower (0.14 (SD 0.10)) as compared with that of the BKF males (0.76 (SD 0.11)) (p-value < 10-3). CONCLUSIONS/SIGNIFICANCE: Based on the results of this study, it can be concluded that the BKF strain will remain the main strain to be used in the elimination programme. Despite the slightly longer survival of the SEN males in the Parc de Hann, the superior competitiveness of the BKF males is deemed more important for the SIT component, as their shorter survival rates can be easily compensated for by more frequent fly releases.


Assuntos
Agentes de Controle Biológico , Infertilidade Masculina/genética , Controle de Insetos/métodos , Moscas Tsé-Tsé/crescimento & desenvolvimento , Animais , Feminino , Insetos Vetores/crescimento & desenvolvimento , Insetos Vetores/virologia , Masculino , Senegal , Moscas Tsé-Tsé/genética
17.
PLoS Negl Trop Dis ; 9(11): e0004229, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26562521

RESUMO

BACKGROUND: Tsetse flies transmit trypanosomes that cause human and African animal trypanosomosis, a debilitating disease of humans (sleeping sickness) and livestock (nagana). An area-wide integrated pest management campaign against Glossina palpalis gambiensis has been implemented in Senegal since 2010 that includes a sterile insect technique (SIT) component. The SIT can only be successful when the sterile males that are destined for release have a flight ability, survival and competitiveness that are as close as possible to that of their wild male counterparts. METHODOLOGY/PRINCIPAL FINDINGS: Tests were developed to assess the quality of G. p. gambiensis males that emerged from pupae that were produced and irradiated in Burkina Faso and Slovakia (irradiation done in Seibersdorf, Austria) and transported weekly under chilled conditions to Dakar, Senegal. For each consignment a sample of 50 pupae was used for a quality control test (QC group). To assess flight ability, the pupae were put in a cylinder filtering emerged flies that were able to escape the cylinder. The survival of these flyers was thereafter monitored under stress conditions (without feeding). Remaining pupae were emerged and released in the target area of the eradication programme (RF group). The following parameter values were obtained for the QC flies: average emergence rate more than 69%, median survival of 6 days, and average flight ability of more than 35%. The quality protocol was a good proxy of fly quality, explaining a large part of the variances of the examined parameters. CONCLUSIONS/SIGNIFICANCE: The quality protocol described here will allow the accurate monitoring of the quality of shipped sterile male tsetse used in operational eradication programmes in the framework of the Pan-African Tsetse and Trypanosomosis Eradication Campaign.


Assuntos
Controle Biológico de Vetores/métodos , Meios de Transporte/métodos , Moscas Tsé-Tsé/fisiologia , Animais , Áustria , Burkina Faso , Temperatura Baixa , Humanos , Masculino , Pupa/fisiologia , Pupa/efeitos da radiação , Senegal , Eslováquia , Análise de Sobrevida , Moscas Tsé-Tsé/crescimento & desenvolvimento , Moscas Tsé-Tsé/efeitos da radiação
18.
Parasit Vectors ; 8: 259, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25927610

RESUMO

BACKGROUND: The application of the sterile insect technique (SIT) requires mass-production of sterile males of good biological quality. The size of the project area will in most cases determine whether it is more cost effective to produce the sterile flies locally (and invest in a mass-rearing facility) or import the sterile flies from a mass-rearing facility that is located in another country. This study aimed at assessing the effect of long distance transport of sterile male Glossina palpalis gambiensis pupae on adult male fly yield. METHODS: The male pupae were produced at the Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso, and shipped with a commercial courier service in insulated transport boxes at a temperature of ±10°C to Senegal (±36 h of transport). Upon arrival in the insectary in Dakar, the pupae were transferred to an emergence room and the flies monitored for 3-6 days. RESULTS: The results showed that the used system of isothermal boxes that contained phase change material packs (S8) managed to keep the temperature at around 10°C which prevented male fly emergence during transport. The emergence rate was significantly higher for pupae from batch 2 (chilled at 4°C for one day in the source insectary before transport) than those from batch 1 (chilled at 4°C for two days in the source insectary before transport) i.e. an average (±sd) of 76.1 ± 13.2% and 72.2 ± 14.3%, respectively with a small proportion emerging during transport (0.7 ± 1.7% and 0.9 ± 2.9%, respectively). Among the emerged flies, the percentage with deformed (not fully expanded) wings was significantly higher for flies from batch 1 (12.0 ± 6.3%) than from batch 2 (10.7 ± 7.5%). The amount of sterile males available for release as a proportion of the total pupae shipped was 65.8 ± 13.3% and 61.7 ± 14.7% for batch 1 and 2 pupae, respectively. CONCLUSIONS: The results also showed that the temperature inside the parcel must be controlled around 10°C with a maximal deviation of 3°C to maximize the male yield.


Assuntos
Moscas Tsé-Tsé/fisiologia , Animais , Burkina Faso , Temperatura Baixa , Infertilidade Masculina , Masculino , Controle Biológico de Vetores , Pupa , Reprodução , Senegal , Fatores de Tempo
19.
Int J Environ Res Public Health ; 10(10): 4718-27, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24084679

RESUMO

West Nile virus (WNV) is an arthropod-borne Flavivirus usually transmitted to wild birds by Culex mosquitoes. Humans and horses are susceptible to WNV but are dead-end hosts. WNV is endemic in Senegal, particularly in the Senegal River Delta. To assess transmission patterns and potential vectors, entomological and sentinel serological was done in Ross Bethio along the River Senegal. Three sentinel henhouses (also used as chicken-baited traps) were set at 100 m, 800 m, and 1,300 m from the river, the latter close to a horse-baited trap. Blood samples were taken from sentinel chickens at 2-week intervals. Seroconversions were observed in sentinel chickens in November and December. Overall, the serological incidence rate was 4.6% with 95% confidence interval (0.9; 8.4) in the sentinel chickens monitored for this study. Based on abundance pattern, Culex neavei was the most likely mosquito vector involved in WNV transmission to sentinel chickens, and a potential bridge vector between birds and mammals.


Assuntos
Galinhas , Culicidae/virologia , Doenças das Aves Domésticas/virologia , Febre do Nilo Ocidental/transmissão , Vírus do Nilo Ocidental/isolamento & purificação , Animais , Ensaio de Imunoadsorção Enzimática/veterinária , Epitopos , Doenças dos Cavalos/epidemiologia , Doenças dos Cavalos/transmissão , Doenças dos Cavalos/virologia , Cavalos , Incidência , Insetos Vetores , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/transmissão , Rios , Senegal , Vigilância de Evento Sentinela , Testes Sorológicos , Febre do Nilo Ocidental/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...